3.3.29 \(\int \frac {\sqrt {\tan (c+d x)}}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [229]

Optimal. Leaf size=168 \[ -\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac {i \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {i \sqrt {\tan (c+d x)}}{10 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i \sqrt {\tan (c+d x)}}{20 a^2 d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

(-1/8-1/8*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/a^(5/2)/d-1/20*I*tan(d*x+c)^(1/2
)/a^2/d/(a+I*a*tan(d*x+c))^(1/2)+1/5*I*tan(d*x+c)^(1/2)/d/(a+I*a*tan(d*x+c))^(5/2)+1/10*I*tan(d*x+c)^(1/2)/a/d
/(a+I*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.28, antiderivative size = 168, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {3638, 3677, 12, 3625, 211} \begin {gather*} -\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}-\frac {i \sqrt {\tan (c+d x)}}{20 a^2 d \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {\tan (c+d x)}}{10 a d (a+i a \tan (c+d x))^{3/2}}+\frac {i \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Tan[c + d*x]]/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((-1/8 - I/8)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(5/2)*d) + ((I/5)*S
qrt[Tan[c + d*x]])/(d*(a + I*a*Tan[c + d*x])^(5/2)) + ((I/10)*Sqrt[Tan[c + d*x]])/(a*d*(a + I*a*Tan[c + d*x])^
(3/2)) - ((I/20)*Sqrt[Tan[c + d*x]])/(a^2*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3638

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-b)*(a + b*Tan[e + f*x])^m*(Sqrt[c + d*Tan[e + f*x]]/(2*a*f*m)), x] + Dist[1/(4*a^2*m), Int[(a + b*Tan[e + f
*x])^(m + 1)*(Simp[2*a*c*m + b*d + a*d*(2*m + 1)*Tan[e + f*x], x]/Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[{
a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && IntegersQ
[2*m]

Rule 3677

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*
f*m*(b*c - a*d))), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\tan (c+d x)}}{(a+i a \tan (c+d x))^{5/2}} \, dx &=\frac {i \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {\int \frac {i a-4 a \tan (c+d x)}{\sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx}{10 a^2}\\ &=\frac {i \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {i \sqrt {\tan (c+d x)}}{10 a d (a+i a \tan (c+d x))^{3/2}}-\frac {\int \frac {\frac {9 i a^2}{2}-3 a^2 \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx}{30 a^4}\\ &=\frac {i \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {i \sqrt {\tan (c+d x)}}{10 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i \sqrt {\tan (c+d x)}}{20 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {\int \frac {15 i a^3 \sqrt {a+i a \tan (c+d x)}}{4 \sqrt {\tan (c+d x)}} \, dx}{30 a^6}\\ &=\frac {i \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {i \sqrt {\tan (c+d x)}}{10 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i \sqrt {\tan (c+d x)}}{20 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{8 a^3}\\ &=\frac {i \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {i \sqrt {\tan (c+d x)}}{10 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i \sqrt {\tan (c+d x)}}{20 a^2 d \sqrt {a+i a \tan (c+d x)}}-\frac {\text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 a d}\\ &=-\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac {i \sqrt {\tan (c+d x)}}{5 d (a+i a \tan (c+d x))^{5/2}}+\frac {i \sqrt {\tan (c+d x)}}{10 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i \sqrt {\tan (c+d x)}}{20 a^2 d \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.91, size = 175, normalized size = 1.04 \begin {gather*} \frac {i e^{-4 i (c+d x)} \left (\sqrt {-1+e^{2 i (c+d x)}} \left (1+3 e^{2 i (c+d x)}+e^{4 i (c+d x)}\right )-5 e^{5 i (c+d x)} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right ) \sqrt {\tan (c+d x)}}{20 \sqrt {2} a^2 d \sqrt {-1+e^{2 i (c+d x)}} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Tan[c + d*x]]/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

((I/20)*(Sqrt[-1 + E^((2*I)*(c + d*x))]*(1 + 3*E^((2*I)*(c + d*x)) + E^((4*I)*(c + d*x))) - 5*E^((5*I)*(c + d*
x))*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]])*Sqrt[Tan[c + d*x]])/(Sqrt[2]*a^2*d*E^((4*I)*(c +
d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 574 vs. \(2 (131 ) = 262\).
time = 0.19, size = 575, normalized size = 3.42

method result size
derivativedivides \(\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (-4 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )+20 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-5 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )-20 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+4 i \left (\tan ^{2}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+30 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+20 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-5 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -20 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{80 d \,a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{4}}\) \(575\)
default \(\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (-4 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right )+20 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-5 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{4}\left (d x +c \right )\right )-20 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+4 i \left (\tan ^{2}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+30 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+20 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-5 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -20 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{80 d \,a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{4}}\) \(575\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/80/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)/a^3*(-4*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*
tan(d*x+c)^3+20*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c
))/(tan(d*x+c)+I))*a*tan(d*x+c)^3-5*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)
+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^4-20*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1
+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)+4*I*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan
(d*x+c)))^(1/2)*tan(d*x+c)^2+30*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a
-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^2+20*I*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-5*2^(1
/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a-2
0*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-I*a)^
(1/2)/(-tan(d*x+c)+I)^4

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 331 vs. \(2 (120) = 240\).
time = 0.68, size = 331, normalized size = 1.97 \begin {gather*} \frac {{\left (10 \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (i \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - 10 \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-i \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 4 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 4 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i\right )}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{40 \, a^{3} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/40*(10*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(I*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(I*d*x + I*c) + 1
/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(
2*I*d*x + 2*I*c) + 1)) - 10*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(-I*a^3*d*sqrt(1/8*I/(a^5*d^2))
*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x
 + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2
*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(I*e^(6*I*d*x + 6*I*c) + 4*I*e^(4*I*d*x + 4*I*c) + 4*I*e^(2*I*d*x + 2*I*
c) + I))*e^(-5*I*d*x - 5*I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\tan {\left (c + d x \right )}}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Integral(sqrt(tan(c + d*x))/(I*a*(tan(c + d*x) - I))**(5/2), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^(1/2)/(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int(tan(c + d*x)^(1/2)/(a + a*tan(c + d*x)*1i)^(5/2), x)

________________________________________________________________________________________